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Think about your answer...

» Question: will we reach a point where genomic predictions may
replace predictions based on rich clinical models?
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> Pros and Cons:

+ Genotypes can be recorded from birth (or earlier)
+ In most cases, genotypes are almost the same through life

Prevention, diagnosis and treatment the soonest possible, previous to
the appearance of any clinical symptom

- Low prediction accuracy for most complex traits in humans

Trait variation depends not only in genetic but environmental factors



2. Including genomics into our models
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Figure: Genome-Wide Association Studies [WTCCC 2007, doi:10.1038/nature05911]
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» How? Phenotype is modelled as a function of someone’s genotype
Example: harmful mutations at BRCA genes increase risk of breast cancer

It can be modelled as a parametric function:
(risk of breast cancer) = constant + B*(BRCA mutations)
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Option 1: include all SNPs using homogeneous priors

Many SNPs may not be important for our target trait
(Very) Large-p-Small-n scenario

Option 2: include only GWAS hits for our target trait| usually, low proportion of the

variance is explained

Option 3: something intermediate between those two extremes

« Genome-Wide Association Meta Analysis (GWAMA)
*  More generous p-values threshold (Bermingham et al. 2015, doi: 10.1038/srep10312)
« Use SNPs of related traits

Overall, NOT combining prior knowledge with our data is a bad idea!



3. Polygenic risk scores

» One simple way (GWAS-based computation):

1. Consider GWAS hits - those p SNPs associated with phenotype
2. Multiply effect size by number of alleles at each locus
3. Add-up across loci for each individual
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Figure: Constructing a polygenic risk score for height.
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4. Using information of related traits

> Results obtained in a real project (rheumatoid arthritis, RA):

Sample size: 304 individuals from a randomized clinical trial
Outcome: prediction of response to an anti-rheumatic drug

Models:
« Clinical, C1: about 45 clinical variables forming a rich clinical model

« Genomics, G1: 172 PRS (regional scores for RA and scores for gene expressions

correlated with the RA regional scores)
 Genomics, G2: 642 PRS for other related traits to RA

Vg
Pearson o (95% Cl) Pearson o (95% Cl) Pearson o (95% Cl)

MO (baseline) | 0.53 (0.51, 0.55) g MO (baseline) | -0.04 (-0.07, 0.01) § MO (baseline) | 0.12 (0.08, 0.17)
0.59 (0.57, 0.61) 0.05 (-0.01, 0.12) 0.16 (0.09, 0.23)

0.59 (0.57, 0.61) 0.03 (-0.03, 0.08) 0.16 (0.10, 0.24)

0.56 (0.54, 0.59) 0.05 (0.02, 0.10) 0.16 (0.10, 0.24)

* Accuracy (correlation between predicted and observed phenotype) computed over the test samples by using 10-fold cross-validation repeated 20 times



5. Discussion

» Question: will we reach a point where genomic predictions may
replace predictions based on rich clinical models?

« | will give my point of view later among
different projects

» Comments, ideas, suggestions...
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